3.8 CRC-32 Code Validation

Cyclic Redundancy Check is a way to do error detection and correction. I have already met CRC when dealing with the DS18B20 sensor where CRC-8 is used during the scratchpad 9 bytes transmission.

The STM32 CRC calculation unit has the following default characteristic:

I don't plan to write a self-signing executable, so on top of the STM32 startup code validation, I will also write a sign32 command to sign binary files during build.

Implementation Steps

  1. Update stm32f030xx.h with the CRC calculation unit definitions.
  2. Update startup with `check_flash()` to be tested before `init()` is called.
  3. Update generic.ld with a new section used as placeholder for the CRC sum at the end of the flashable content.
  4. Write `sign32` command to sign a binary file.
  5. Update Makefile to sign the binary executable and create an intel hex version out of it.

1. stm32f030xx.h

The CRC calculation unit is on the AHB bus and its clock need to be enabled before use.
#define RCC_AHBENR_CRCEN        (1 << 6)    /*  6: CRC clock enable */
I will make use of the default setup so I only need to refer to the Data Register and the Control Register. I create all register definitions as there is a gap in the memory layout.
#define CRC             ((volatile unsigned *) 0x40023000)
#define CRC_DR          CRC[ 0]
#define CRC_IDR         CRC[ 1]
#define CRC_CR          CRC[ 2]
#define CRC_INIT        CRC[ 4]

2. startup.crc.c

I make a copy of startup.ram.c into startup.crc.c.

I use conditional compilation, the build option `CRC32SIGN` will be defined in the Makefile.

The constant variable `crcsum` is a placeholder with the hexadecimal value DEADC0DE in byte order. This value will be overriden by the computed CRC value during build. The linker will put `crcsum` at the end of the used FLASH.

`check_flash()` use the CRC calculation unit to compute the CRC value from beginning of FLASH `isr_vector` to end of FLASH `crcsum`. If `crcsum` value is the correct CRC, the computed result will be 0.

#ifdef CRC32SIGN
const unsigned crcsum __attribute__((section(".crc_chk"))) = 0xDEC0ADDE ;

static int check_flash( void) {
    int ret = 0 ;

/* Flash CRC validation */
    RCC_AHBENR |= RCC_AHBENR_CRCEN ;  /* Enable CRC periph */
    CRC_CR = 1 ;                      /* Reset */
    if( CRC_DR == 0xFFFFFFFF) {       /* CRC periph is alive and resetted */
        const unsigned *wp = (const unsigned *) isr_vector ;
        while( wp <= &crcsum)
            CRC_DR = *wp++ ;

        ret = CRC_DR == 0 ;
    }

    RCC_AHBENR &= ~RCC_AHBENR_CRCEN ; /* Disable CRC periph */
    return ret ;
}
#endif
Flash content is checked before calling `init()`. This means the check is done using the default clock setup of HSI 8 MHz.
    if(
#ifdef CRC32SIGN
      check_flash() &&
#endif
      init() == 0)
        main() ;

3. generic.ld

I add a new section to hold the CRC value placeholder. This needs to be DWORD aligned and at the end of the used FLASH area.
    .crc __etext + SIZEOF(.data) :
    {
        KEEP(*(.crc_chk))
    } > FLASH

4. sign32

The command `sign32` creates a signed.bin file from it's input file specified as parameter.
$ touch empty.bin

$ ./sign32 empty.bin
FFFFFFFF empty.bin: 0, signed.bin: 4
If the input file is already signed, the output signed.bin is identical to the input.
$ mv signed.bin FFFFFFFF.bin

$ ./sign32 FFFFFFFF.bin
00000000 FFFFFFFF.bin: 4, signed.bin: 4
Padding with null is done on the input to insure the calculation is DWORD aligned.
$ echo > nl.bin

$ ./sign32 nl.bin
E88E0BAD nl.bin: 1, signed.bin: 8

$ hexdump -C signed.bin
00000000  0a 00 00 00 ad 0b 8e e8                           |........|
00000008

Calculation stops when the placeholder DEADC0DE is found or the end of the input file is reached.

I create a folder crc32/ for sign32.c and its Makefile.

The core of sign32.c is customizable to do CRC calculation bitwise, unrolled bitwise, tablewise or to generate the CRC table.

5. Makefile

The build option `CRC32SIGN` controls the signature of the binary file and the generation of the intel hex version from the signed binary using `objcopy`.
# build options
CRC32SIGN := 1

ifdef CRC32SIGN
 CDEFINES += -DCRC32SIGN=$(CRC32SIGN)
endif

%.$(BINLOC).bin: %.elf
    @echo $@
    $(OBJCOPY) -O binary $< $@
ifdef CRC32SIGN
    crc32/sign32 $@
    mv signed.bin $@

%.hex: %.$(BINLOC).bin
    @echo $@ from $<
    $(OBJCOPY) --change-address=$(BINLOC) -I binary -O ihex $< $@
else

%.hex: %.elf
    @echo $@ from $<
    $(OBJCOPY) -O ihex $< $@
endif


Building and testing

If I build an executable, I can see that the binary file is CRC-32 signed. In the example below, the CRC-32 signature is 0xDEAD68BE and the total binary image is 1728 bytes long.
$ make
f030f4.elf from startup.crc.o txeie.o uptime.o libstm32.a
Memory region         Used Size  Region Size  %age Used
           FLASH:        1728 B        16 KB     10.55%
             RAM:          16 B         4 KB      0.39%
   text    data     bss     dec     hex filename
   1725       0      16    1741     6cd f030f4.elf
f030f4.0x08000000.bin
crc32/sign32 f030f4.0x08000000.bin
DEAD68BE f030f4.0x08000000.bin: 1724, signed.bin: 1728
mv signed.bin f030f4.0x08000000.bin
f030f4.hex from f030f4.0x08000000.bin
I can double check that the value at the end of the binary file matches.
$ hexdump -C f030f4.0x08000000.bin | tail
00000630  8b 42 01 d3 cb 00 c0 1a  52 41 83 08 8b 42 01 d3  |.B......RA...B..|
00000640  8b 00 c0 1a 52 41 43 08  8b 42 01 d3 4b 00 c0 1a  |....RAC..B..K...|
00000650  52 41 41 1a 00 d2 01 46  52 41 10 46 70 47 ff e7  |RAA....FRA.FpG..|
00000660  01 b5 00 20 00 f0 06 f8  02 bd c0 46 00 29 f7 d0  |... .......F.)..|
00000670  76 e7 70 47 70 47 c0 46  50 4c 4c 48 53 45 0a 00  |v.pGpG.FPLLHSE..|
00000680  20 25 64 20 25 73 25 73  00 75 70 00 77 65 65 6b  | %d %s%s.up.week|
00000690  00 64 61 79 00 68 6f 75  72 00 6d 69 6e 75 74 65  |.day.hour.minute|
000006a0  00 73 65 63 6f 6e 64 00  30 31 32 33 34 35 36 37  |.second.01234567|
000006b0  38 39 41 42 43 44 45 46  00 00 00 00 be 68 ad de  |89ABCDEF.....h..|
000006c0
I can flash the resulting intel hex file and see that it executes.
$ stm32flash -x f030f4.hex COM6
stm32flash 0.7-patch-exe

http://stm32flash.sourceforge.net/

Using Parser : Intel HEX
Location     : 0x8000000
Size         : 1728
Interface serial_w32: 57600 8E1
Version      : 0x31
Option 1     : 0x00
Option 2     : 0x00
Device ID    : 0x0444 (STM32F03xx4/6)
- RAM        : Up to 4KiB  (2048b reserved by bootloader)
- Flash      : Up to 32KiB (size first sector: 4x1024)
- Option RAM : 16b
- System RAM : 3KiB
Write to memory
Erasing memory
Wrote address 0x080006c0 (100.00%) Done.

Starting execution at address 0x08000000... done.
I can use stm32flash to compute the CRC-32 checksum on the first 1728 bytes of FLASH, the result is 0 as this covers both the payload AND the CRC-32 checksum value.
$ stm32flash -C -S 0x08000000:1728 COM6
stm32flash 0.7-patch-exe

http://stm32flash.sourceforge.net/

Interface serial_w32: 57600 8E1
Version      : 0x31
Option 1     : 0x00
Option 2     : 0x00
Device ID    : 0x0444 (STM32F03xx4/6)
- RAM        : Up to 4KiB  (2048b reserved by bootloader)
- Flash      : Up to 32KiB (size first sector: 4x1024)
- Option RAM : 16b
- System RAM : 3KiB
CRC computation
CRC address 0x080006c0 (100.00%) Done.
CRC(0x08000000-0x080006c0) = 0x00000000
If I ask stm32flash to compute the CRC-32 checksum on the first 1724 bytes (payload excluding CRC-32 checksum value), it returns 0xdead68be, which is the value computed at build time.
$ stm32flash -C -S 0x08000000:1724 COM6
stm32flash 0.7-patch-exe

http://stm32flash.sourceforge.net/

Interface serial_w32: 57600 8E1
Version      : 0x31
Option 1     : 0x00
Option 2     : 0x00
Device ID    : 0x0444 (STM32F03xx4/6)
- RAM        : Up to 4KiB  (2048b reserved by bootloader)
- Flash      : Up to 32KiB (size first sector: 4x1024)
- Option RAM : 16b
- System RAM : 3KiB
CRC computation
CRC address 0x080006bc (100.00%) Done.
CRC(0x08000000-0x080006bc) = 0xdead68be
Because STM32F030 USART bootloader is v3.1, it doesn't implement the CRC checksum command included in v3.3. This means that in this case stm32flash computes the CRC checksum value on its own. You can check the sources of stm32flash for its implementation of the CRC-32 calculation.

Checkpoint

There is variations in the functionality of the CRC calculation unit among different STM32 chipset family. The check_flash() implementation I just made relies on the default settings for polynomial, initial value, polynomial length and shift direction. This should be common to most chipset.

Next, I will use the ADC to read a resistor value.


© 2020-2025 Renaud Fivet